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Abstract. A stability analysis is performed analytically for the tristable reaction-diffusion equation, in
which a quintic reaction term is approximated by a piecewise linear function. We obtain growth rate
equations for two basic types of propagating fronts, monotonous and nonmonotonous ones. Their solutions
show that the monotonous front is stable whereas the nonmonotonous one is unstable. It is found that there
are two values of the growth rate for the most dangerous modes (corresponding to the longest possible
wavelengths), ω = 0 and ω < 0, for the monotonous front, so that at ω = 0 the perturbation eigenfunction
is positive whereas when ω < 0 it changes sign. It is also noted that the eigenvalue ω = 0 becomes negative
in an inhomogeneous system with a particular (stabilizing) inhomogeneity. Counting arguments for the
number of eigenmodes of the linear stability operator are presented.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 47.20.Ma Interfacial instability –
47.54.+r Pattern selection; pattern formation

Reaction-diffusion equations have been studied exten-
sively and for a long time as a qualitative model for nerve
conduction [1]. The dynamics are usually taken to be ex-
citable and describe pulse solutions. The study of equa-
tions with another basic type of the dynamics describing
fronts has also a long history going back to the works of
Fisher [2] and Kolmogorov, Petrovskii and Piskunov [3].
The simplest reaction-diffusion equation describing a front
connecting two stable fixed points (the rest and the ex-
cited states) has a cubic nonlinearity and is called bistable
model [4]. In the present paper, our interest is directed at a
generalization of the bistable model to a multistable case.
Fronts in a multistable reaction-diffusion equation may be
considered as composed of bistable fronts [5]. Such compo-
sitions may produce monotonous or nonmonotonous solu-
tions. We will consider here a simple multistable model
– a tristable equation, where a quintic nonlinear reac-
tion term is approximated by a piecewise linear func-
tion. This approach, well-known in the literature [6–14],
allows us to obtain analytic solutions for the propagat-
ing waves. The method has more general applicability
and is often the only way to investigate some nonlin-
ear problems analytically in an approximate fashion [15].
In most papers related to reaction-diffusion equations,
bistable [8,10,14] and excitable [7,9,11] systems are in-
vestigated. However, to the best of our knowledge, before
the present study, no fully analytic solutions of the stabil-
ity problem for monotonous and nonmonotonous tristable
fronts were available. In reference [16], the global stabil-
ity of monotonous fronts was investigated only. Thus, the
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problem statement for our work is the linear stability anal-
ysis of basic front types in a piecewise linear tristable equa-
tion.

Piecewise linear approximations of the reaction terms
use the Heaviside step function θ(u), so that using this
approach the tristable equation can be written as

∂u(x, t)
∂t

= −u− 1+ θ(u− η)+ θ(u− η∗)+
∂2u(x, t)

∂x2
, (1)

where η and η∗ are constants, |η|, |η∗| < 1, for definiteness
η∗ > η. This equation admits two basic types of propa-
gating fronts1. The first front solution interpolates from
u = −1 as ξ → −∞ to u = 1 as ξ → ∞ and consists
of three pieces (monotonous 3-front). The second solution
connects u = −1 and u = 0 passing through all three
zones. This front consists of four pieces (nonmonotonous
4-front). To construct the front solutions one imposes the
matching conditions for the functions and their derivatives
at matching points ξ0, ξ

∗
0 (and ξ∗∗0 for the 4-front), where

adjacent parts of the solution are patched together. Due
to translational invariance of the basic equations, the po-
sition of one matching point can be chosen arbitrarily, for
example, ξ0 = 0. This is a consequence of the homogeneity
of the model. In Figure 1, we give an example of both so-
lutions. The obtained fronts have different velocities and
shapes. For a given reaction-diffusion system, the speed
of the 4-front is larger than that of the 3-front. Velocity
dependences will be presented and discussed below. The

1 One introduces traveling frame coordinate ξ = x−ct, where
c is the front velocity. Then equation (1) transforms to an ODE
for u(ξ).
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Fig. 1. Monotonous (3-front) and nonmonotonous (4-front)
traveling waves. The dashed lines represent the boundary val-
ues η and η∗, restricting middle interfacial zones of the fronts.

shape of the waves is determined by the positions of the
matching points ξ0, ξ

∗
0 and ξ∗∗0 . The first matching point,

ξ0 = 0, is the same for both waves and the second match-
ing points do not differ significantly. The crucial factor is
the appearance of a third matching point in the 4-front
profile that is responsible for a hump in the wave shape.
However, this is still a front, not a combined front-pulse
wave, because the initial and the final states are different.
In the bistable front, there is no hump in the wave pro-
file. A hump can appear in the case of nonlocal equations
(with an integral convolution in space) [17]. The hump of
the 4-front grows in the ξ direction when the value of the
second boundary η∗ increases (at fixed η). Then the value
of the third matching point ξ∗∗0 grows faster than the value
ξ∗0 . However, there exists a restriction [18] on the size of
the zone between η and η∗. Mathematically, the restric-
tion condition arises due to a second matching point oc-
curing, which can be observed during the derivation of the
front velocity relationship. Its appearance, though not its
precise form, may be conveniently discussed in terms of a
mechanical analogue, provided by a particle in a triple-hill
potential [4], formed by integration of the reaction term
in equation (1). The potential is piecewise parabolic and
the front speed is identified with a friction coefficient.

The simplest case is that of a steady front, where the
friction coefficient is zero. Then the left and right max-
imum have to be of the same height for the 3-front to
exist and the middle maximum has to be lower. For the 4-
front, the particle starts from the position u = −1, passes
through the point u = 0, but does not reach u = 1, in-
stead it comes back to u = 0. So for a steady 4-front to
exist, the right maximum must be higher than the other
two, which have to be of the same height.

For nonzero front velocities and, hence, friction coeffi-
cients, a 3-front can in principle exist, if the three maxima
form a monotonously decreasing or increasing sequence.
Consider the case of positive friction (i.e., front velocity).
Then the particle in the potential may move from u = −1
to u = 0, still having a positive velocity and come to rest
on the maximum at u = 1, which may be lower than that
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Fig. 2. Velocity behavior described by equation (2) in the ho-
mogeneous model for the monotonous front (thick curves), c
versus η, for different values of η∗: (i) η∗ = −1/4, (ii) η∗ = 0
and (iii) η∗ = 1/4. The thin curve corresponds to the asymp-
totics λ+ + γη = 0.

at u = 0, because the particle still loses energy while go-
ing from u = 0 to u = 1. However, it should be clear that
there is a restriction on the height of the third maximum;
if the latter is too low, the particle will overshoot and,
hence, a front solution does not exist.

4-fronts with positive speed (corresponding to a posi-
tive friction coefficient) can exist only, if the middle max-
imum of the triple-hill potential is lower than the other
two. For if the right maximum were not higher than the
middle one, a particle returning because it did not reach
the energy of the maximum at u = 1 would not be able to
end up on the maximum at u = 0.

This discussion shows that for certain arrangements of
the triple-hill potential a 3-front may exist while a 4-front
is impossible. In general, if the middle maximum is lower
than the two outer ones, both fronts will exist. A similar
discussion may of course be carried through for negative
front velocities.

As earlier in the bistable model, the front speed may
be determined from the matching conditions. Reducing
the number of equations via elimination of all unknowns
except the velocity, we obtain a relationship for the latter.
In the case of the 3-front it reads [18]

1
λ+

ln
( −λ−

λ+ + γη

)
=

1
λ− ln

(−λ− − γη∗

λ+

)
= ξ∗0 , (2)

where λ± = −c/2 ± √
c2/4 + 1 ≡ (−c ± γ)/2. Hence it

follows that η = −η∗ in the case of zero velocity, i.e.,
when the piecewise linear function representing the re-
action part of equation (1) is symmetric about zero, the
3-front is stationary. The velocity behavior described by
equation (2) is shown in Figure 2. The thick curves display
front speed curves, c versus η, for different values of η∗.
When η∗ < 0 the velocity is negative for any value of η
[curves (i) and (ii) in Fig. 2]. For positive η∗, the velocity
may be positive or negative depending on the position of
η [curve (iii)]. The speed increases as the distance η∗ − η
decreases, so that the maximum value of c on each speed
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curve occurs at vanishing size of the middle interfacial
zone of the front profile2 when η∗ → η. When this zone
grows, the speed curve tends to an asymptotic line (thin
curve), described by the equation λ+ + γη = 0. A simi-
lar behavior (speed growth with η∗) is observed for the c
versus η∗ dependences at different values of η. In the last
case, the asymptotics is λ− + γη∗ = 0. Both asymptotics
are derived from equation (2) and the fact that ±λ± > 0.

In the case of the 4-front, the procedure of the veloc-
ity determination is mathematically the same, and we turn
our attention to the discussion of the speed behavior. For a
symmetric reaction term, the velocity of the 4-front is non-
zero, as opposed to the 3-front wave. The explanation of
this result is provided by the particle-in-a-potential anal-
ogy again. Due to the symmetry, the left and right hills
are global maxima whereas the middle one is only a local
maximum. The particle representing the 4-front should re-
turn to the (lower) middle maximum, which it can do only
for a positive friction, i.e. positive front speed.

Next we explore the problem of the traveling front sta-
bility. To perform the stability analysis, we consider a per-
turbed solution of the form u(ξ) + ũ(ξ)eωt+ipy, where the
wave number p is fixed and the growth rate ω(p) is a
function of the wave number. The tristable equation dif-
fers from the bistable model only in the number of the
Heaviside functions. Therefore, as in the bistable case, ω
and p appear in the equation in the combination ω + p2,
i.e., the fastest growing mode will then always be at p = 0
and we may restrict ourselves to the p = 0 case as long
as we are interested in global stability only. The details
of the stability analysis for the 3-front are collected in the
Appendix, where the growth rate relationship

(Ωχ − 1)(Ωχ∗ − 1) = e−Ωξ∗
0 (3)

is obtained. Here, we have introduced the notation Ω =√
c2 + 4(1 + ω). The parameters

χ =
∣∣∣∣du

dξ

∣∣∣
ξ0

∣∣∣∣ = λ+(1+η) and χ∗ =
∣∣∣∣du

dξ

∣∣∣
ξ∗
0

∣∣∣∣ = −λ−(1−η∗)

(4)
are calculated at both matching points for the unper-
turbed front solutions u(ξ), taking into account that the
parameters |η|, |η∗| < 1 and ±λ± > 0. The relationship (3)
is depicted in Figure 3 as ω = ω(η) for different values
of η∗. For each η∗ the diagram demonstrates two lines
that present ω = 0 and ω < 0 solutions. Both lines ter-
minate at some value of η. This magnitude corresponds
to a limited boundary value for the size of the middle
zone obtained from the above mentioned restriction [18].
When the value η∗ grows, both lines in Figure 3 shift to
the right side on the diagram, but the behavior remains
the same. Thus, we conclude that inside some interval of
η the 3-front is stable and outside there exists no solution
at all.

2 This zone corresponds to the distance in u between the
two points u = η, η∗, i.e., this is also the middle zone in the
reaction function f(u) = 0.
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Fig. 3. Growth rate ω of disturbances versus η dependence de-
scribed by equation (3) for the monotonous 3-front for different
values of η∗ in the homogeneous model. The solid line corre-
sponds to the solution with speed dependence (iii) in Figure 2
at η∗ = 0.25, whereas the circles present the case η∗ = 0.23.

We note in passing that the transformation v =
exp(−cξ/2)ũ turns the variational equation (A.2) into

∂2v

∂ξ2
+ [(δ(u − η) + δ(u − η∗)] v =

(
1 + ω +

c2

4

)
v ,

which after introducing the replacements δ(u − η) =
δ(ξ−ξ0)/|u′(ξ0)| and δ(u−η∗) = δ(ξ−ξ∗0)/|u′(ξ∗0)|{+δ(ξ−
ξ∗∗0 )/|u′(ξ∗∗0 )|}, with the term in braces absent for the
3-front and present for the 4-front3, becomes a one-
dimensional time-independent Schrödinger equation with
a potential consisting of a sum of two or three δ func-
tions, respectively, and an energy eigenvalue equal to
E = −(1 + ω + c2

4 ). Since we know that the eigenvalues
of a Schrödinger equation are real, we need not consider
the possibility of complex values of ω, i.e., we can be sure
that there is no Hopf bifurcation and that to determine
the front stability, it is sufficient to check where ω changes
sign instead of just the real part of ω.

In addition, the transformation to a known
Schrödinger equation provides us with information
about the multiplicity of possible eigenvalues. First,
it is clear that a front has an infinite spectrum, since
there is an infinity of possible wave numbers p for the
perturbation. However, we have restricted ourselves to
just one value of p (namely, p = 0) and are now in
a position to discuss how many eigenvalues should be
expected for each p. It is known that the Schrödinger
equation in one dimension with a (negative) δ function
potential always has one bound state. This ground state
does not have any nodes. If we add a second (negative)
δ function potential, the number of bound eigenstates
depends on the separation and strength of these δ peaks.
Provided they are far enough from each other, a second

3 To convert the δ function with argument u into one with
argument ξ, we have to sum over all zeros of its total argument.
There is one root for each δ function if the front profile is
monotonous. In the case of the 4-front, there are two roots for
u = η∗.
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eigenfunction is possible that changes sign once and has
a node between the two peaks. If they are too close to
each other, we just stay with a single bound state. Note
that only bound states can correspond to positive growth
rates in our case, since a positive value of ω implies a
negative energy. However, if ω is negative and smaller
than 1 + c2/4 in absolute value, we still have a bound
state. Unbound states of the Schrödinger equation do not
decay to zero at infinity and hence do not correspond
to legitimate solutions of the stability problem. With a
third δ function appearing, we expect a third eigenvalue
generically, depending on the distance of the peaks of the
potential.

To summarize, we expect up to two eigenvalues for ω
in the case of the 3-front and up to three in the case of the
4-front. There will be always one eigenvalue at least, and
if there should be only one, this must be ω = 0, since the
translational mode is neutral in the basic homogeneous
model of equation (1).

Using equation (4) and the expressions for λ±, we find
that χ = χ∗ yields −2c+ c(η∗− η)+ γ(η∗ + η) = 0. Hence
in the case of a stationary front (η∗ = −η, c = 0), the
growth rate relationship (3) is reduced to

2(1 + η)
√

1 + ω − 1 = ±(1 + 2η)
√

1+ω . (5)

To determine the critical points ηcrit, where the stability
behavior changes (in the general case ω changes sign, in
our case the solution disappears), we set ω = 0 in equa-
tion (5). Then we obtain the equivalence (identity) at any
η for the plus sign and η = −1/2 for the minus sign on the
right side of equation (5). Thus, there is a trivial ω = 0
solution of equation (5) for any value of η ∈ (−1/2, 0).
The relationship (5) may be depicted as ω = ω(η) as was
done for equation (3) in Figure 3. The obtained diagram
shows again two lines with ω = 0 and ω < 0 similar to Fig-
ure 3. Each line corresponds to a solution of equation (5)
with a different sign on the right side. The equation with
the positive sign yields the straight line at ω = 0 and the
case with the negative sign describes the curve at ω < 0.
Both lines terminate at ηcrit = −1/2, i.e., the motionless
3-front is stable inside the interval between η = −1/2 and
η = 04 (which is its entire existence interval). The triv-
ial case ω = 0 makes sense, because the solution should
have translational invariance. Indeed, if translational in-
variance is violated, for example, due to an inhomogeneity
in the model equation, then in the growth rate relation-
ship additive terms related to the particular solution ū(ξ)
of the inhomogeneous problem appear and equation (3)
transforms to

(Ωχ − 1)(Ωχ∗ − 1) = eΩ(ξ0−ξ∗
0 ). (6)

Here, the value of ξ0 is essential (it cannot be chosen ar-
bitrarily) since translational invariance does not hold. Of

4 Since η∗ = −η and η∗ > η the parameter η must be nega-
tive.
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Fig. 4. Growth rate ω versus η dependence for the station-
ary 3-front in the inhomogeneous model with symmetric re-
action term, η∗ = −η. The (+) and (−) lines correspond to
the solutions of equation (9) with positive and negative signs
in the right side, respectively. The coordinates of the termina-
tion point are ηcrit = −0.4 and ω(ηcrit) ≈ −0.3 (the curves are
shown for ξ0 = 1 and f0 = 0.1).

course, now we have a modified velocity relationship [18]

1
λ+

ln
[ −λ−

λ+ + γη − γū(ξ0)

]
=

1
λ− ln

[−λ− − γη∗ + γū(ξ∗0)
λ+

]
= ξ∗0 − ξ0, (7)

where the reaction term constants η, η∗ are shifted in
comparison with equation (2) due to the particular so-
lution ū(ξ) of the inhomogeneous problem, η → η −
ū(ξ0), η∗ → η∗ − ū(ξ∗0 ). The jump parameters χ and χ∗,

χ =
∣∣∣∣λ+[1 + η − ū(ξ0)] +

dū(ξ0)
dξ

∣∣∣∣ ,

χ∗ =
∣∣∣∣−λ−[1 − η∗ + ū(ξ∗0)] +

dū(ξ∗0)
dξ

∣∣∣∣ (8)

also contain derivatives, dū/dξ. Thus, when ū(ξ)=const.,
the stability behavior remains the same as in the homo-
geneous system. The only difference is the shift of the
termination point, ηcrit → ηcrit − ū.

To be more specific, let us consider the stationary
front (c = 0) in the model with symmetric reaction term
(η∗ = −η > 0) and a linear inhomogeneity, f̄(ξ) =
f0ξ, f0 = const > 0.5 Then ū(ξ)c=0 = f0ξ and the growth
rate equation (6) becomes

2(1+η−f0ξ0+f0)
√

1 + ω−1 = ±(1+2η−2f0ξ0)
√

1+ω. (9)

The dependence ω versus η described by equation (9) is
presented graphically in Figure 4. The old solution ω = 0
for any η related to the plus sign on the right side of equa-
tion (5) disappears here due to the ū(ξ) inclusions, so that

5 The positive slope f0 here is essential to provide only two
matching points in the front profile.
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the old line ω = 0 is now shifted to the region of nega-
tive values of ω. This curve corresponds to the solution of
equation (9) with a plus sign on the right side [line (+)
in Fig. 4], whereas the equation with a minus sign still
describes a curve ω < 0 [line (-)]. The whole behavior ω
versus η remains basically the same as compared with Fig-
ure 3, only the termination point at (ηcrit, ωcrit) for both
curves is shifted to larger values of η as follows directly
from equation (9): ηcrit → ηcrit−f0ξ0, f0ξ0 > 0. Its coordi-
nates may be obtained by setting to zero each side of equa-
tion (9). So, ηcrit = −1/2+f0ξ0 and ωcrit = 1/(1+2f0)2−1.
Thus, we can summarize that the solution ω = 0 disap-
pears in the inhomogeneous system, in general. For the
linear ramp, both ω eigenvalues are negative, so that the
3-front remains still stable. A similar situation is present in
the inhomogeneous bistable two-component system. The
linear inhomogeneity in space breaks the translational
symmetry of both bistable fronts and renders them sta-
ble when the slope of f0 is large [19–21]. When the slope
decreases, instability of the front occurs through bifurca-
tion [19,20] if the medium is excitable.

Let us now turn our attention again to the homoge-
neous system. The solutions for the perturbation eigen-
function ũ(ξ) and for the perturbed fronts (at t = 0)
U(ξ) = u(ξ) + ũ(ξ), are shown in Figure 5 for the sym-
metric case (η∗ = −η = 0.4). The curves ũ(ξ) and U(ξ)
show two bends at ξ0 = 0 and ξ∗0 due to the jumps in
the ũ derivative. As this is a consequence of the piecewise-
linear approximation of the reaction term, we suppose that
there are no bends in the case of the continuous (quintic)
tristable model. The perturbation eigenfunctions ũ(ξ) can
be different in shape. From the expressions for the con-
stants Ã21 and Ã3 (see Appendix), it follows that when the
magnitude Ωχ − 1 is positive, the perturbation is always
positive also and has two hills (Fig. 5a). When this mag-
nitude is negative, the perturbation may take on negative
values and is hill-well shaped (Fig. 5b). From our analogy
with a Schrödinger equation, we realize that in this sec-
ond case the perturbation eigenfunction has a node and
hence must therefore have a negative as well as a positive
part. Taking into account equation (5), we conclude that
the perturbation is always positive (rather of one sign,
because the prefactor is arbitrary) when ω = 0, whereas
when ω < 0, the perturbation will have negative values.
Again, this is expected from the analogy, as the larger
eigenvalue ω = 0 corresponds to the lower energy, i.e., the
ground state, of the Schrödinger equation. This result is
true for the nonsymmetric case as well.

In the case of the 4-front, the general form of the
perturbation eigenfunctions is similar and the matching
conditions consist of 9 equations. Omitting the details we
write the growth rate equation

Γ1Γ2Γ3eλ̃+ξ∗
0 eλ̃−ξ∗

0 eλ̃+ξ∗∗
0 = (2 + Γ2)eλ̃+ξ∗

0 eλ̃−ξ∗
0 eλ̃−ξ∗∗

0

+ Γ1e2λ̃+ξ∗
0 eλ̃−ξ∗∗

0 + Γ3e2λ̃−ξ∗
0 eλ̃+ξ∗∗

0 (10)

with λ̃± = −c/2 ± √
c2/4 + 1 + ω ≡ (−c ± Ω)/2, Γi =

(Ωχi − 1), i = 1, 2, 3, χ1 ≡ χ, χ2 ≡ χ∗ and χ3 = |u′(ξ∗∗0 )|.
Performing the numeric computation of the growth rate ω
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Fig. 5. Perturbation ũ(ξ) and perturbed motionless
monotonous fronts U(ξ) = u(ξ) + ũ(ξ) at t = 0 in the ho-
mogeneous model in the cases (a) ω = 0 and (b) ω < 0. The
dashed lines are u = η and u = η∗, as in Figure 1.

in equation (10), we obtain three values ω < 0, ω > 0 and
ω = 0 for each choice η (for the sake of simplicity we re-
strict ourselves here to the case when η∗ = −η). Again, the
multiplicity three is expected from the Schrödinger equa-
tion analogy. (However, we would expect it to go down to
two when ξ∗0 and ξ∗∗0 become almost equal.) Thus, one can
make the inference that the 4-front is unstable. We think
that the situation closely resembles that in more complex
N -fronts (they intersect the line u = η∗ N −2 times in the
tristable model), which behave very much like the 4-front.
Conditions for the existence of such a kind of general-
ized front solutions are determined by the corresponding
matching equations.

The analysis presented here applies globally in the
model parameter space and may be extended to the gen-
eral multistable system. Our studies bring up an interest-
ing theoretical question: What is the effect of the 4-front
instability, can this unstable front transform to the stable
3-front or to the simple 2-front (bistable front between
u = −1 and u = 0) during its evolution (relaxation to the
rest from the perturbed wave)? To answer this question
in the affirmative, we would have to investigate the con-
ditions for the existence of a phase transition caused by
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the instability of the metastable state. And if these condi-
tions allow the transition between the 4 and 3 or 2-fronts,
then the next intriguing question arises: What is the phys-
ical mechanism responsible for this transition? For one
example, in non-dissipative systems the parametric reso-
nance underlies the mechanism responsible for phase tran-
sitions [22]. It is possible that the treatment with reaction-
diffusion systems would not strongly violate this princi-
ple because the traveling front solutions of the nonlinear
Klein-Gordon equation with u4 − u6 self-coupling consid-
ered in reference [22] are similar to the reaction-diffusion
fronts. Thus, the stability analysis of the tristable fronts
presented here is of great practical importance in nonequi-
librium physics applications as the starting point for the
development of a nonlinear analysis of the fronts in the
multistable models.

In conclusion, a piecewise linear tristable reaction-
diffusion equation was investigated. Matching procedures
and the stability analysis of fronts were performed ana-
lytically. Exact analytic solutions were obtained for the
front velocity and the growth rate of perturbations. Two
basic types of the tristable fronts, monotonous and non-
monotonous (the 3 and 4-fronts), were considered. It was
shown that the 3-front is stable and the 4-front is unstable.
It is anticipated that similar behavior arises for the com-
bined compositions of tristable fronts. However, we expect
more complex behaviour in the case of two-component
systems, because in this situation front solutions in the
bistable system differ not only in their internal structure
but also in their propagation direction, so that the veloc-
ity diagrams show a pitchfork bifurcation [23]. The sta-
bility analysis presented here can be extended to the case
of two-component system, too. Related to the bifurcation
diagram we expect similar stability characteristics to be
found as in the bistable system.

This work was supported by the Deutsche Forschungsgemein-
schaft under Grant FOR 301/2-1 (3) in the framework of a
research group on “Interface dynamics in pattern forming pro-
cesses”.

Appendix: Stability of the 3-fronts
in the homogeneous system

A full perturbed solution has the form U(ξ, t) = u(ξ) +
∆u(ξ, t), where a small perturbation ∆u(ξ, t) is added to
the planar front solution u(ξ). In the frame moving at
velocity c, the variational equation for the small pertur-
bation ∆u reads

∂∆u

∂t
=

∂2∆u

∂ξ2
+ c

∂∆u

∂ξ
+

df(u)
du

∆u. (A.1)

With a perturbation of the form ∆u(ξ, t) = ũ(ξ)eωt and
the expression for the reaction term f(u) = −u−1+θ(u−
η) + θ(u − η∗), it becomes

d2ũ

dξ2
+ c

dũ

dξ
− [1 + ω − δ(u − η) − δ(u − η∗)]ũ = 0, (A.2)

where δ(u) is the Dirac delta function. Here we consider
the system when ω has positive or small negative values,
so that 1 + ω > 0. The procedure for the 3 and 4-fronts
is essentially the same and we illustrate the analysis only
for monotonous wave. Satisfying the boundary conditions
ũ1(ξ → −∞) = 0 and ũ3(ξ → +∞) = 0, the solution for
the perturbation eigenfunction reads

ũ1(ξ) = Ã1eλ̃+ξ , ξ ≤ ξ0 ,

ũ2(ξ) = Ã21eλ̃+ξ + Ã22eλ̃−ξ , ξ0 ≤ ξ ≤ ξ∗0 ,

ũ3(ξ) = Ã3eλ̃−ξ , ξ ≥ ξ∗0 , (A.3)

where λ̃± = −c/2±√
c2/4 + 1 + ω ≡ (−c±Ω)/2. The per-

turbation matching conditions differ from the front match-
ing only in the equations for the derivative of ũ(ξ). Due
to the δ-functions in equation (A.2), dũ(ξ)/dξ has finite
jump discontinuities at ξ = ξ0 and ξ = ξ∗0 . In the match-
ing conditions, there are two small constants, ũ0 and ũ∗

0,
fixing the perturbation eigenfunction. Setting ξ0 = 0 and
inserting solution (A.3) into the matching conditions, we
obtain a set of equations

Ã1 = Ã21 + Ã22 ,

Ã1λ̃
+ = Ã21λ̃

+ + Ã22λ̃
− + ũ0/χ ,

Ã1 = ũ0 ,

Ã21eλ̃+ξ∗
0 + Ã22eλ̃−ξ∗

0 = Ã3eλ̃−ξ∗
0 ,

Ã21λ̃
+eλ̃+ξ∗

0 + Ã22λ̃
−eλ̃−ξ∗

0 = Ã3λ̃
−eλ̃−ξ∗

0 + ũ∗
0/χ∗ ,

Ã3eλ̃−ξ∗
0 = ũ∗

0 , (A.4)

where χ = |du(0)/dξ| and χ∗ = |du(ξ∗0)/dξ|. We must
note here that one constant, ũ0 or ũ∗

0, is determined by
equation (A.4) and another one is arbitrary6. We choose
ũ0 as arbitrary constant. Eliminating ũ0 and ũ∗

0 from the
equations we compute the determinant of the matrix mul-
tiplying (Ã1, Ã21, Ã22, Ã3),

det




1 −1 −1 0
λ̃+ − 1/χ −λ̃+ −λ̃− 0

0 eλ̃+ξ∗
0 eλ̃−ξ∗

0 −eλ̃−ξ∗
0

0 λ̃+eλ̃+ξ∗
0 λ̃−eλ̃−ξ∗

0 −(λ̃− + 1/χ∗)eλ̃−ξ∗
0




= 0 (A.5)

and obtain the growth rate relationship (3).
Finally we collect the expressions for the perturbation

eigenfunction constants

Ã1 = ũ0, (A.6)

Ã21 =
ũ0

Ωχ
(Ωχ − 1), (A.7)

Ã22 =
ũ0

Ωχ
, (A.8)

Ã3 =
ũ0

Ωχ∗ − 1
χ∗

χ
. (A.9)

6 However, this constant must be small because the pertur-
bation ∆u is small.



E.P. Zemskov and K. Kassner: Stability analysis of fronts in a tristable reaction-diffusion system 429

References

1. R. FitzHugh, Biophys. J. 1, 445 (1961); J.S. Nagumo,
S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)

2. R.A. Fisher, Ann. Eugenics 7, 355 (1937)
3. A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, Bull.

Univ. Moscow, Ser. Internat., Sect. A 1, 1 (1937)
4. A.S. Mikhailov, Foundations of Synergetics I. Distributed

Active Systems (Springer, Berlin, 1994)
5. M. Leda, A.L. Kawczyński, in Proc. of the 3rd
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